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Abstract

The main purpose of this paper is to propose two three-dimensional Poiseuille—Rayleigh—Bénard flows (mixed convection flows in horizon
rectangular channels heated from below), covering two different flow ranges, as benchmark problems and to solicit numerical comparis
between various contributors in order to obtain two benchmark solutions for the validation of numerical codes. The second objective is to ident
the less perturbing outflow boundary conditions for this flow type. The first test case is a steady longitudinal roll flow in a large aspect ratio chan
(A=L/H =50,B =1/H = 10) at moderate Reynolds humbe= 50, Rayleigh numbeRa= 5000 and Prandtl numbé&r = 0.7. The second
one is a fully-established space and time periodic transversal roll flow in a small aspect ratio cHanrd,(B = 4) at small Reynolds number
Re= 0.1, Ra= 2500 andPr = 7. The model equations are the incompressible Navier—Stokes equations under the Boussinesq approximation.
0 2005 Elsevier SAS. All rights reserved.

Keywords:Comparison exercise; Numerical benchmark; Poiseuille—Rayleigh—Bénard flow; Mixed convection; Rectangular channel; Outflow boundary conditior

a0 _ v 0=0
1. Objectives o0

The purpose of this paper is to propose two three-dimensiongfiseuille / N\ Outfloy

Poiseuille—Rayleigh—Bénard (PRB) flows as benchmark prob- mflow
lems and to solicit interested groups to submit numerical so- :
lutions for comparison. The main objective is to obtain a nu- A g
merical benchmark solution to validate numerical codes for the - )
computation of thermoconvective instabilities in open channelsizl'?ér; Vevgﬁ’sr";teryaﬁ?;b;otf’c)and bottom thermal boundary conditions (the vertical
The second objective is to evaluate the influence of the outflow '

boundary conditions on the bulk solutions and to identify the. . . . -
less perturbing outflow boundary conditions for two different'™ imposed at the channel entrance and the incoming fluid is

p g y

flow classes. The third objective is to identify the most efficientCOId‘ After an entrance zone over which a zero heat flux is im-

numerical methods in terms of CPU time and computationaPOSEd on the four walls, the top horizontal wall is maintained
cost to deal with this type of problems at a cold temperatur@, and the bottom wall is maintained

at a higher temperaturg,. The vertical lateral walls are adi-
2. Governing equations abatic. LetA and B represent the streamwise and spanwise
aspect ratios of the computational domain ahdthe stream-
The two flows proposed as benchmark cases are PRB flowgise entrance aspect ratio. The working fluid is Newtonian
in horizontal rectangular channels (cf. Fig. 1). A Poiseuille flowand the flows are governed by the 3D incompressible Navier—
Stokes equations under the Boussinesq assumption. Using the
mpondmg authors. channel height?, the mean flow velocity/mean pUr%ean and
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nicolas@univ-miv.fr (X. Nicolas). sure and time, respectively, and using the reduced temperature
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0 =(T — T,)/(T, — T,.), the governing equations take the fol- the initial conditions given in Section 2 after an intermittent

lowing dimensionless form: phase which will not be exploited here.
V v=0 .
WL @EVI=-Vp+ 1y2; +5 Ra ek (1) 4. Analysisof theresults
e
1 2
5 +0.V0 = pigeV20 4.1. Analysis of the first test case

wherex, v, z, t, v = (u,v,w) and p are the dimensionless

streamwise, spanwise and vertical coordinates, time, velocity Calculate the four dimensionless heat fluxes defined in Ta-
vector and pressure, is the upward unit vectoRr is Prandtl  ple 1, wheres;, S,, S; and S, are the inlet, outlet, top and
number & v/a), Reis Reynolds number= Umeanf?/v) and  bottom surfaces of the channel respectively.

Rais Rayleigh number= gB(T), — T.) H3/(va)). For the two Calculate the 18 dimensionless momentum fluxes defined in
test cases, the boundary and initial conditionsfos, w andé  Taple 2, wheres ; ands, designate the front and rear surfaces at
are: y=0andy=B respectively and calculate the integral of the
eatz=0,v=0; for x € [-A,,0], 30/3z = 0; for x € By denotingg tﬁe four dimensionless fields u, v andw
[0,A — Ael, 0= 1 and by denotindNu, (x, y) andNu, (x, y) the local Nusselt num-

eatz=1v=0; for x € [-A,,0], 30/dz = 0; for x €  pers on the top and bottom walls, with:
[O’ A Ae]! 0 - 01

e aty=0andB, i =0 andad/dy = 0; N, (x y):_H(%)Z=H,Z=0 __(% @

e atx = —A,, u = upgis(y, z), v =w = 0 andd = 0, where o T, — T, 3z JR—
upois(y, z) is given either directly by an approximate solu-
tion of the Poisson equatlo%'P“—t”[’—2‘"S 42 Tieas — Regl, with
no-slip boundary conditions @t 0 andB and atz =0
and 1, or by the analytical solution of this equation given(1) ¢y—z(x) at(y,z) = (2,0.2) and(5, 0.5) (= 8 profiles);
in [1]; (2) Nu,, (x) aty = 2 and 5 & 4 profiles);

e atx = A — A, an outflow non-reflective boundary condi- (3) ¢, _ z()’) atx = 10,30 and 48 and at= 0.2 and 0.5 £ 24
tion is imposed. The choice of this boundary condition is  profiles);
left free: one will just try to impose a boundary condition (4) Nu, 5, (y) atx = 10, 30 and 48 £ 6 profiles);
that perturbs the outflow the least;

o at tdg O,OVX €[=Ae, A= Al u=upois(y, ), v=w=0 " anqg determine their minimum and maximum valug&'{:™*
ande =2 pmnmax N '” max - jymin. b ) and their locations(x, y,

3. Definition of thetwo test cases z)Min.max Consequently, 42 profiles and 84 extrema and their
coordinates have to be calculated.
The first test case is a steady longitudinal roll flow defined
by: Re=50; Ra=5000;Pr=0.7; A=50; B=10; A, =2. 4.2. Analysis of the second test case
The second test case is a space and time periodic transversal roll
flow defined by:Re=0.1; Ra=2500;Pr=7; A=25;B=4; 4.2.1. Spatial analysis at a fixed time
A, =5. These two flows are symmetrical about the median lon- This flow is first analyzed at the fixed timé > ¢*, where
gitudinal vertical plane and they are obtained by starting from* is the time necessary to get the fully-established periodic

compute and display the following longitudinal and transversal
profiles:

Table 1
Py i P00 Po.b Po.1
[fs,(—RePuo + 5)dyd: s, (RePrud — 8)dydz [fs, 32 dr dy [fs, — 5% dxdy
Table 2
Py Dy Dy
S; Jfs, (= r%e3¥+uz)dydz s, me(5e + 83‘)dydz JIs, we(58 + ) dyde
So Jfs, (=p + Zed —u?)dydz S5, (Be(B2 + )*”U)dydz Ifs, (Re(32 + 94) —uw) dydz
Sy ffsf( R‘ea_)dxdz ffsf — el y) ffsf(_Rl‘e%_l;)dXdz
Sr ffS,(I%e%)dXdZ [fs, (=p+ Wd”)dxdz ffs,(l%eaflf dy dz
Sb ffs,,(_RlTaaTI:)dXdy Ils, (= Reg?) dr dy ffs,,(l’—%f—’?)dxdy
S ffs,(}%ag% dxdy Jfs,( egl)dx [s,(=p+ }%e%)d/“dy
Stot 0 0 JIfp(5526)drdyde
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Table 3
&E?iog,oz(x) =SUP-,  #(x,y=02,2=021) 4;;??:0‘2’0‘2(/‘) =infisp(x,y=02,2=02,1)
P 05() =SUR- 1, §(x,y =2,2=05,1) PN, 0500 =infrared(x,y=2,2=05,1)
flow and where® is the time when the vertical velocity compo- Determine the minimum and maximum valugg™ "=,

nentw reaches a local maximum at the fixed point y, z) = N@“;:;Tax of these 22 signals and the 16 dimensionless frequen-

(15.5,2,0.5). Cpmpute the four heat fluxeBy ;, ®g.o, Po cies fy._,_.(» from the 16 signal®,_,_,(¢). Finally, compute
and &g 5, the eighteen momentum flux@s, ;, ®,,, ... and the 16 eh\)elopes af defined in Table 3.
@, +, the volume integral of the buoyancy term given in Ta-

bles 1 and 2 (note that, since the flow of the second test case is . )
unsteady, the total fluxes are non-zero) and the following longi®- D€adlinesand presentation of theresults
tudinal, transversal and vertical profiles:
The time allotted for completion of this exercise is not fixed
(1) ¢y—:(x) at(y,z) =(0.2,0.2) and(2, 0.5) (= 8 profiles); yet. However, a presentation of the first results is already sched-

(2) Ny, 5, (x) aty =0.2 and 2 & 4 profiles); uled during the congress SFT2006 of the French Heat Trans-
(3) ¢x—:(y) at(x, z) = (15.5,0.5) (= 4 profiles); fer Society that will take place at the lle de Ré, 16-19 May
(4) Nu p, (y) atx =155 (= 2 profiles); 2006. Therefore, the potential contributors should condsct
(5) ¢x—y(z) atx =20 and aty = 0.2 and 2 & 8 profiles); soon as possibléhe coordinators of this comparison exercise

. . S _ (M. Medale and X. Nicolas) and send them their (first) results
and, for each profile, determine their minimum and maximunpefore the end of April to permit their compilation with the
valuesg(™: % NYTM ™ g M NUTMT and MM other results.
and their locationsx, y, z)™"Max Therefore, 26 profiles and Remarks, comments and further information relative to this
52 extrema and their coordinates have to be calculated. Congomparison exercise (required results, data format, presentation
pute the four average dimensionless waveleném;(x), in of the results, deadlines, first results,) will be available on

the interval 7< x < 15, from the four longitudinal profiles the web page of the French Heat Transfer Society (SFT): www.

¢y—z(x) at(y,z) = (2,0.5). sft.asso.fr/groupes/simul.html.
4.2.2. Temporal analysis References
Starting from timer = ¢°, record the following signalé ()
andNu, , (1): [1] A. Benzaoui, X. Nicolas, S. Xin, Efficient vectorized finite difference
method to solve the incompressible Navier—Stokes equations for 3D mixed
(1) ¢x—y—;(r) atx =0,5,15 and 20, ay = 2 and atz = 0.5 convection flows in high aspect ratio channels, Numer. Heat Transfer B 48
(= 16 signals); (2005) 277-302.

(2) N p, (1) atx =5,15 and 20 and at = 2 (= 6 signals).
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